How ERC-7579 works: a technical introduction

The introduction of ERC-7579 demonstrates a commitment to improving the current standards, specifically ERC-6900, to create a more user — and developer-friendly experience. Additionally, ERC-7579 seeks to enhance the account abstraction capabilities of ERC-4337, opening up new possibilities in the field. Here's our technical guide on how ERC-7579 works.

TL; DR

  • Account Abstraction (AA) via ERC-4337 transforms traditional accounts into smart contracts, enabling advanced features like passkey authentication and gas-free transactions, adopted by leading wallets like Safe, OKX and Biconomy.

  • The new ERC-7579 standard improves smart contract accounts, making them more compatible and easier to create. Industry players developed it and emphasize its simplicity and comprehensiveness.

  • ERC-7579 aims to provide a comprehensive approach to managing accounts, allowing for flexible execution methods and data encoding to enable customizable and versatile account services.

  • ERC-7579's main features include smart account and module configurations for interoperability. It integrates hooks and ERC-1271 forwarding to improve functionality and security.

  • Implementing modular smart account standards, such as ERC-7579, marks a major progression in blockchain technology, offering a more cohesive, flexible, and future-oriented community.

What are ERC-4337 and ERC-7579?

ERC-4337

The introduction of account abstraction (AA), as outlined by ERC-4337, mitigates many issues with traditional externally owned accounts (EOAs) and raises the bar for on-chain interactions. As accounts have been transformed into smart contracts, they can incorporate unique methods for controlling access and implementing new logic that was previously not feasible.

Some of the top wallets in the industry, including Safe, Biconomy, ZeroDev, and OKX, have already introduced advanced functionalities such as passkey authentication, account retrieval, and gas-free transactions.

However, this is only the beginning. Similar to how smartphones transformed how people interact with the digital realm through third-party applications, smart contract accounts will bring about a similar change in Web3 by facilitating an accessible network of account services and modules. DApp initiatives and other developers will be able to effortlessly onboard users and offer personalized experiences.

ERC-7579

ERC-7579 is a smart contract account standard released in a collaboration between Rhinestone, Biconomy, ZeroDev, and OKX. It seeks to push forward AA innovation by providing a set of interfaces and expected behaviors to streamline development efforts and encourage interoperability.

The standard was guided by the principles of minimalism and comprehensiveness. Being minimal, the fundamental theme of ERC-7579, is crucial as it reduces the chance of imposing unnecessary or even incompatible requirements on implementations. At the same time, the standard had to take into account all the possible requirements and ensure compatibility between wallets that vastly diverge in implementation.

What is ERC-7579 core functionality?

The primary goal of ERC-7579 is to create a uniform method for carrying out account tasks. This will provide modules and other integrators with a definitive understanding of what to expect and look for. The guideline should cover all forms of executions, including Single, Batch, and Delegatecall.

Additionally, it must be capable of accommodating intricate execution patterns and various forms of data encoding, which OKX first introduced.

To accomplish this, the standard uses a singular bytes32 argument that encodes all the necessary information.

  • The CallType (single, batch, delegatecall) can be enumerated using the first byte.

  • Using the ExecType flag, executions can also be flagged to not revert on failure, allowing the rest of the userOp (other uncorrelated executions) to proceed.

  • A ModeSelector was included to allow implementations to specify any other nuances they might require, as well as a ModePayLoad to allow for the inclusion of additional data.

These primitives can form any other combination a wallet might require, and implementations can choose which modes to support, with minimal complexity and overhead.

The core of the matter lies within the modules. For modules to be account-agnostic and interoperable, ERC-7579 had to establish interfaces and guidelines, which required meeting several requirements. Accounts need a way to determine a module's capabilities for security and functionality reasons. Modules also need a structured format for interacting with accounts and vice versa.

What are the specifications ERC-7579 highlights?

  • Smart account configurations: To ensure interoperability, smart accounts must have an interface that can provide account identifiers, facilitate checks for execution modes, and enable compatibility checks for module types, all for unique identification.

  • Module configurations: Smart accounts must incorporate a module configuration interface. This guarantees that module types are distinguished for authorization purposes and specifies procedures for installing and uninstalling modules. Additionally, it includes mechanisms for signaling any changes in a module's lifespan.

Extensions: Hooks and ERC-1271 Forwarding

  • Hooks: An optional extension; hooks allow smart accounts to perform custom logic checks before and after executions, highlighting the standard's flexibility in accommodating custom functionalities.

  • ERC-1271 Forwarding: Implementing ERC-1271, smart accounts may forward signature validation calls to validators, showcasing an integration of modular functionality with existing Ethereum standards.

Practical applications and implementations

Biconomy's use of modular smart accounts serves as a real-life demonstration of how these standards can be applied. By incorporating different modules, such as validators and executors, Biconomy makes it easier for users to validate operations and manage the system in a modular manner, highlighting its adaptable and versatile nature.

The platform uses a smart accounts factory to set up initial modules according to ERC-4337 standards. It also introduces new concepts such as ECDSA and Passkey Authorization Modules to improve security and user satisfaction.

The final word

The movement towards establishing consistent modular smart accounts, as seen in proposals like ERC-7579, is a significant step towards harmonizing the way blockchain accounts and modules interact. This promotes compatibility and progress and tackles issues such as being restricted to one vendor and fragmentation within the current system.

Observing the practical advantages and potential of modular smart account implementations, it becomes clear that these standards can create a more adaptable, interconnected, and forward-thinking landscape for blockchain technology.

免责声明
本文章可能包含不适用于您所在地区的产品相关内容。本文仅致力于提供一般性信息,不对其中的任何事实错误或遗漏负责任。本文仅代表作者个人观点,不代表欧易的观点。 本文无意提供以下任何建议,包括但不限于:(i) 投资建议或投资推荐;(ii) 购买、出售或持有数字资产的要约或招揽;或 (iii) 财务、会计、法律或税务建议。 持有的数字资产 (包括稳定币和 NFTs) 涉及高风险,可能会大幅波动,甚至变得毫无价值。您应根据自己的财务状况仔细考虑交易或持有数字资产是否适合您。有关您具体情况的问题,请咨询您的法律/税务/投资专业人士。本文中出现的信息 (包括市场数据和统计信息,如果有) 仅供一般参考之用。尽管我们在准备这些数据和图表时已采取了所有合理的谨慎措施,但对于此处表达的任何事实错误或遗漏,我们不承担任何责任。欧易 Web3 功能,包括欧易 Web3 钱包和欧易 NFT 市场都受 www.okx.com 单独的服务条款约束。
© 2024 OKX。本文可以全文复制或分发,也可以使用本文 100 字或更少的摘录,前提是此类使用是非商业性的。整篇文章的任何复制或分发亦必须突出说明:“本文版权所有 © 2024 OKX,经许可使用。”允许的摘录必须引用文章名称并包含出处,例如“文章名称,[作者姓名 (如适用)],© 2024 OKX”。不允许对本文进行衍生作品或其他用途。
展开
相关推荐
查看更多
查看更多