RIO
RIO

Realio Network hinta

$0,20376
-$0,01960
(−8,78 %)
Hinnanmuutos viimeisen 24 tunnin ajalta
USDUSD
Mitä olet mieltä RIO-rahakkeista tänään?
Jaa tunnelmasi täällä lisäämällä peukku ylös, jos olet optimistinen kolikon suhteen, tai peukku alas, jos olet negatiivinen kolikon suhteen.
Äänestä nähdäksesi tulokset

Realio Network markkinatiedot

Markkina-arvo
Markkina-arvo lasketaan kertomalla kolikon kierrossa oleva tarjonta sen viimeisellä hinnalla.
Markkina-arvo = kierrossa oleva tarjonta × viimeinen hinta
Kierrossa oleva tarjonta
Kolikon kokonaissumma, joka on julkisesti saatavilla markkinoilla.
Markkina-arvorankkaus
Kolikon sijoittuminen markkina-arvon mukaan.
Kaikkien aikojen korkein
Korkein hinta, jonka kolikko on saavuttanut treidaushistoriansa aikana.
Kaikkien aikojen alhaisin
Alin hinta, jonka kolikko on saavuttanut treidaushistoriansa aikana.
Markkina-arvo
$13,51M
Kierrossa oleva tarjonta
66 294 025 RIO
120,53 % /
55 000 000 RIO
Markkina-arvorankkaus
266
Auditoinnit
CertiK
Viimeisin auditointi: 9.2.2023
24 h korkein
$0,22865
24 h matalin
$0,19796
Kaikkien aikojen korkein
$8,8800
−97,71 % (-$8,6762)
Viimeksi päivitetty: 16.9.2020
Kaikkien aikojen alhaisin
$0,013200
+1 443,61 % (+$0,19056)
Viimeksi päivitetty: 13.10.2022

Realio Network-rahakkeiden hinnan suorituskyky valuutassa USD

Realio Network-rahakkeiden nykyinen hinta on $0,20376. Kuluneen 24 tunnin aikana Realio Network on laski −8,77 %. Sen tämän hetkinen kierrossa oleva tarjonta on 66 294 025 RIO ja sen enimmäistarjonta on 55 000 000 RIO, joten sen täysin dilutoitu markkina-arvo on $13,51M. Tällä hetkellä Realio Network-kolikko on sijalla 266 markkina-arvotaulukossa. Realio Network/USD-hinta päivitetään reaaliajassa.
Tänään
-$0,01960
−8,78 %
7 päivää
-$0,08474
−29,38 %
30 päivää
-$0,02944
−12,63 %
3 kuukautta
-$0,65764
−76,35 %

Lisätietoja: Realio Network (RIO)

4.1/5
CyberScope
4.1
31.03.2025
Arvostelu on OKX:n tarjoamista lähteistä kokoama yhteenlaskettu arvostelu, ja se on tarkoitettu vain tiedoksi. OKX ei takaa arvostelujen laatua tai tarkkuutta. Sen tarkoituksena ei ole tarjota (i) sijoitusneuvontaa tai -suositusta, (ii) tarjousta tai kehotusta ostaa, myydä tai pitää hallussa digitaalisia varoja tai (iii) taloudellista, kirjanpidollista, oikeudellista tai veroperusteista neuvontaa. Digitaalisiin varoihin, kuten vakaakolikkoihin ja NFT:ihin, liittyy suuri riski, niiden arvo voi vaihdella suuresti ja niistä voi jopa tulla arvottomia. Digitaalisten varojen hintaa ja tuottoa ei ole taattu, ja ne voivat muuttua ilman ennakkoilmoitusta. Digitaalisia varojasi ei ole vakuutettu mahdollisten tappioiden varalta. Aiemmat tuotot eivät ole osoitus tulevista tuotoista. OKX ei takaa tuottoa eikä pääoman tai korkojen takaisinsaamista. OKX ei tarjoa sijoitus- tai omaisuussuosituksia. Sinun on harkittava huolellisesti, sopiiko digitaalisten varojen treidaus tai hallussapito sinulle ottaen huomioon taloudellisen tilanteesi. Ota yhteyttä laki-/vero-/sijoitusalan ammattilaiseen, jos sinulla on kysyttävää omaan tilanteeseesi liittyen.
Näytä lisää
  • Virallinen verkkosivusto
  • White paper
  • Lohkoketjutyökalu
  • Tietoa kolmansien osapuolten verkkosivustoista
    Tietoa kolmansien osapuolten verkkosivustoista
    Käyttämällä kolmannen osapuolen verkkosivustoa hyväksyt, että kolmannen osapuolen verkkosivuston käyttöön sovelletaan kolmannen osapuolen verkkosivuston ehtoja. Ellei nimenomaisesti kirjallisesti mainita, OKX ja sen tytäryhtiöt (”OKX”) eivät ole millään tavalla yhteydessä kolmannen osapuolen verkkosivuston omistajaan tai ylläpitäjään. Hyväksyt, että OKX ei ole vastuussa mistään menetyksistä, vahingoista tai muista seurauksista, jotka johtuvat kolmannen osapuolen verkkosivuston käytöstäsi. Huomaa, että kolmannen osapuolen verkkosivuston käyttö voi johtaa varojesi menettämiseen tai vähenemiseen.

The Realio Network (RIO) is a platform that leverages blockchain technology to offer digital issuance, funding, and peer-to-peer trading services. It utilizes a modified distributed network to facilitate the seamless connection and distribution of decentralized communities.

With a focus on integrating regulatory compliance and decentralization, the Realio Network presents a comprehensive solution. It achieves this by employing a new, Web3-enabled Layer-1 blockchain within the Cosmos ecosystem.

What Is Realio Network?

Realio's platform utilizes blockchain technology to offer an integrated solution for managing digital securities and crypto assets' distribution, assets, and life-cycle. The platform combines high-end blockchain and cryptocurrency solutions for businesses with outstanding investment options and access to a fully decentralized exchange (DEX) that operates entirely on the blockchain.

At the core of the Realio Network is the RIO token, which serves as the utility token for the platform. It is crucial in facilitating various operations such as project creation, token issuance, fee transactions, and forum discounts within the Realio Network ecosystem.

History of Realio Network

The Realio Network was established in 2018 by Derek S. Boiron, the Chief Executive Officer, and Aaron Gooch, the Chief Technology Officer. In March 2020, the network published its whitepaper outlining its vision and goals. Over time, the Realio Network team has been dedicated to enhancing the platform by introducing various notable features. These include introducing a decentralized exchange (DEX) to facilitate seamless trading, implementing an efficient financial planning platform, and developing a comprehensive suite of reporting and analytics tools. These additions further enhance the capabilities and offerings of the Realio Network.

Realio Network utility token - RIO

The Realio Network platform utilizes RIO as its native utility token. The RIO token is a utility token that enables users to pay for transactions on the Realio Network, engage in the platform's administration, and access exclusive functions and content. The RIO token holds intrinsic value and has a limited supply. It is listed on multiple trading platforms, facilitating its availability for purchase and sale. The Realio Network itself is decentralized and specifically designed to facilitate the issuance and management of digital assets.

RIO's tokenomics

The RIO token operates with a maximum supply of 75 million tokens. It is actively traded on various exchange platforms, providing liquidity and accessibility to traders. As of now, the circulating supply of RIO amounts to 6,568,515 tokens.

How to stake RIO

To stake RIO tokens, follow these steps:

  1. Purchase RIO: Acquire RIO tokens through various exchanges where they are listed and available for trading.
  2. Select a Staking Pool: Choose a suitable staking pool from the available options. Multiple staking pools are currently available for RIO token holders.
  3. Delegate Your Tokens: Delegate your RIO tokens to the chosen staking pool. This can typically be done through a designated staking interface provided by the pool or by following specific instructions outlined by the pool.
  4. Earn Incentives: By delegating your RIO tokens to a staking pool, you become eligible to receive rewards. The rewards you earn will be proportional to the amount of RIO tokens delegated and the duration of the delegation period. These rewards serve as incentives for participating in the staking process.

Please note that it is essential to carefully review the staking instructions provided by the specific staking pool you choose, as the exact procedures and requirements may vary.

RIO use cases

The RIO token offers a range of uses within the Realio Network:

  1. Transactional payment: RIO is the sole payment method for all transactions conducted on the Realio Network. This encompasses creating, transferring, and trading digital assets within the platform.
  2. Governance participation: Token holders can engage in the Realio Network's governance by actively voting on proposals that impact the network. This grants RIO token holders a voice in shaping the development and management of the platform.
  3. Exclusive benefits: RIO token holders can access various exclusive features and content. This includes early access to new functionalities, reduced transaction fees, and entry to restricted events on the Realio Network.

Distribution of RIO

The distribution of RIO tokens is divided as follows:

  1. Airdrop to early adopters: 30 percent of the RIO tokens were distributed through an airdrop to early adopters of the Realio Network. This allocation rewards and encourages early supporters of the platform.
  2. Reserved for the Realio Group: Another 30 percent of the tokens are allocated to the Realio group. This portion is held by the team behind the development and operation of the Realio Network.
  3. Initial coin offering (ICO): 20 percent of the RIO tokens were made available for sale during the Initial Coin Offering (ICO) phase. This allowed investors and participants to acquire tokens through the ICO process.
  4. Staking and Governance Allocation: The remaining 20 percent of the tokens are designated for staking and governance purposes. This allocation is intended to incentivize token holders to actively participate in staking and contribute to the governance of the Realio Network.

RIO's future expansion plans

RIO has outlined several future expansion plans, which include:

  1. Network expansion: The Realio Network is currently in the beta phase and is accessible to a limited number of users. However, there are plans to expand the network's availability, allowing more users to access its features and services.
  2. Asset class expansion: While the Realio Network currently focuses on real estate tokens, there are plans to expand its capabilities to accommodate additional asset classes. This expansion will provide users with a broader range of options for tokenization and exchange.
  3. Market expansion: Currently, the availability of the Realio Network is limited to specific markets. However, there are plans to expand into new markets. Realio aims to broaden its market reach by venturing into regions such as the United States, Europe, and Asia, enabling a more global presence.
  4. Partnerships: The Realio team actively seeks partnerships with real estate and financial companies. By collaborating with established industry players, Realio aims to enhance the visibility of the Realio Network and drive broader adoption of the RIO token and platform.
Näytä lisää
Näytä vähemmän

Realio Network UKK

Kuinka paljon 1 Realio Network on arvoltaan tänään?
Tällä hetkellä yksi Realio Network on arvoltaan $0,20376. Jos haluat vastauksia ja tietoa Realio Network-rahakkeen hintakehityksestä, olet oikeassa paikassa. Tutustu uusimpiin Realio Network-kaavioihin ja treidaa vastuullisesti OKX:ssä.
Mikä on kryptovaluutta?
Kryptovaluutat, kuten Realio Network, ovat digitaalisia varoja, jotka toimivat lohkoketjuiksi kutsutussa julkisessa pääkirjassa. Lue lisää OKX:ssä tarjottavista kolikoista ja rahakkeista ja niiden eri ominaisuuksista, joihin kuuluvat reaaliaikaiset hinnat ja reaaliaikaiset kaaviot.
Milloin kryptovaluutta keksittiin?
Vuoden 2008 finanssikriisin ansiosta kiinnostus hajautettua rahoitusta kohtaan kasvoi. Bitcoin tarjosi uudenlaisen ratkaisun olemalla turvallinen digitaalinen vara hajautetussa verkossa. Sittemmin on luotu myös monia muita rahakkeita, kuten Realio Network.
Nouseeko Realio Network-rahakkeiden hinta tänään?
Tutustu Realio Network-rahakkeiden hintaennustesivu nähdäksesi tulevien hintojen ennusteet ja määrittääksesi hintatavoitteesi.

ESG-tiedonanto

Kryptovaroja koskevien ESG-säännösten (Environmental, Social ja Governance) tavoitteena on puuttua niiden ympäristövaikutuksiin (esim. energiaintensiivinen louhinta), edistää avoimuutta ja varmistaa eettiset hallintokäytännöt, jotta kryptoala olisi linjassa laajempien kestävyyteen ja yhteiskuntaan liittyvien tavoitteiden kanssa. Näillä säännöksillä kannustetaan noudattamaan standardeja, jotka lieventävät riskejä ja edistävät luottamusta digitaalisiin varoihin.
Varan tiedot
Nimi
OKcoin Europe LTD
Asianomaisen oikeudellisen tahon tunniste
54930069NLWEIGLHXU42
Kryptovaran nimi
realio_network
Konsensusmekanismi
realio_network is present on the following networks: binance_smart_chain, ethereum, osmosis, solana. Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security. Core Components 1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network’s security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security. 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security. 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network. 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB. 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network’s security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance. 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently. The Ethereum network uses a Proof-of-Stake Consensus Mechanism to validate new transactions on the blockchain. Core Components 1. Validators: Validators are responsible for proposing and validating new blocks. To become a validator, a user must deposit (stake) 32 ETH into a smart contract. This stake acts as collateral and can be slashed if the validator behaves dishonestly. 2. Beacon Chain: The Beacon Chain is the backbone of Ethereum 2.0. It coordinates the network of validators and manages the consensus protocol. It is responsible for creating new blocks, organizing validators into committees, and implementing the finality of blocks. Consensus Process 1. Block Proposal: Validators are chosen randomly to propose new blocks. This selection is based on a weighted random function (WRF), where the weight is determined by the amount of ETH staked. 2. Attestation: Validators not proposing a block participate in attestation. They attest to the validity of the proposed block by voting for it. Attestations are then aggregated to form a single proof of the block’s validity. 3. Committees: Validators are organized into committees to streamline the validation process. Each committee is responsible for validating blocks within a specific shard or the Beacon Chain itself. This ensures decentralization and security, as a smaller group of validators can quickly reach consensus. 4. Finality: Ethereum 2.0 uses a mechanism called Casper FFG (Friendly Finality Gadget) to achieve finality. Finality means that a block and its transactions are considered irreversible and confirmed. Validators vote on the finality of blocks, and once a supermajority is reached, the block is finalized. 5. Incentives and Penalties: Validators earn rewards for participating in the network, including proposing blocks and attesting to their validity. Conversely, validators can be penalized (slashed) for malicious behavior, such as double-signing or being offline for extended periods. This ensures honest participation and network security. Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and Tendermint Core to provide secure, decentralized, and scalable transaction processing. Core Components: Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or are delegated by other token holders. Validators are responsible for validating transactions, producing blocks, and maintaining network security. Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant (BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of validators are malicious. Decentralized Governance: OSMO token holders can participate in governance by voting on protocol upgrades and network parameters, fostering a community-driven approach to network development. Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high throughput, low latency, and robust security. Here’s a detailed explanation of how these mechanisms work: Core Concepts 1. Proof of History (PoH): Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions, creating a historical record that proves that an event has occurred at a specific moment in time. Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash that includes the transaction and the time it was processed. This sequence of hashes provides a verifiable order of events, enabling the network to efficiently agree on the sequence of transactions. 2. Proof of Stake (PoS): Validator Selection: Validators are chosen to produce new blocks based on the number of SOL tokens they have staked. The more tokens staked, the higher the chance of being selected to validate transactions and produce new blocks. Delegation: Token holders can delegate their SOL tokens to validators, earning rewards proportional to their stake while enhancing the network's security. Consensus Process 1. Transaction Validation: Transactions are broadcast to the network and collected by validators. Each transaction is validated to ensure it meets the network’s criteria, such as having correct signatures and sufficient funds. 2. PoH Sequence Generation: A validator generates a sequence of hashes using PoH, each containing a timestamp and the previous hash. This process creates a historical record of transactions, establishing a cryptographic clock for the network. 3. Block Production: The network uses PoS to select a leader validator based on their stake. The leader is responsible for bundling the validated transactions into a block. The leader validator uses the PoH sequence to order transactions within the block, ensuring that all transactions are processed in the correct order. 4. Consensus and Finalization: Other validators verify the block produced by the leader validator. They check the correctness of the PoH sequence and validate the transactions within the block. Once the block is verified, it is added to the blockchain. Validators sign off on the block, and it is considered finalized. Security and Economic Incentives 1. Incentives for Validators: Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are distributed in SOL tokens and are proportional to the validator’s stake and performance. Transaction Fees: Validators also earn transaction fees from the transactions included in the blocks they produce. These fees provide an additional incentive for validators to process transactions efficiently. 2. Security: Staking: Validators must stake SOL tokens to participate in the consensus process. This staking acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or fails to perform, they risk losing their staked tokens. Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing network security and decentralization. Delegators share in the rewards and are incentivized to choose reliable validators. 3. Economic Penalties: Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked tokens, discouraging dishonest actions.
Kannustinmekanismit ja sovellettavat maksut
realio_network is present on the following networks: binance_smart_chain, ethereum, osmosis, solana. Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators. Incentive Mechanisms 1. Validators: Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards. Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks. 2. Delegators: Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks. Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network’s security and decentralization by choosing reliable validators. 3. Candidates: Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience. 4. Economic Security: Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network. Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets. Fees on the Binance Smart Chain 5. Transaction Fees: Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators. Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet. 6. Block Rewards: Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions. 7. Cross-Chain Fees: Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience. 8. Smart Contract Fees: Deployment and Execution Costs: Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform. Ethereum, particularly after transitioning to Ethereum 2.0 (Eth2), employs a Proof-of-Stake (PoS) consensus mechanism to secure its network. The incentives for validators and the fee structures play crucial roles in maintaining the security and efficiency of the blockchain. Incentive Mechanisms 1. Staking Rewards: Validator Rewards: Validators are essential to the PoS mechanism. They are responsible for proposing and validating new blocks. To participate, they must stake a minimum of 32 ETH. In return, they earn rewards for their contributions, which are paid out in ETH. These rewards are a combination of newly minted ETH and transaction fees from the blocks they validate. Reward Rate: The reward rate for validators is dynamic and depends on the total amount of ETH staked in the network. The more ETH staked, the lower the individual reward rate, and vice versa. This is designed to balance the network's security and the incentive to participate. 2. Transaction Fees: Base Fee: After the implementation of Ethereum Improvement Proposal (EIP) 1559, the transaction fee model changed to include a base fee that is burned (i.e., removed from circulation). This base fee adjusts dynamically based on network demand, aiming to stabilize transaction fees and reduce volatility. Priority Fee (Tip): Users can also include a priority fee (tip) to incentivize validators to include their transactions more quickly. This fee goes directly to the validators, providing them with an additional incentive to process transactions efficiently. 3. Penalties for Malicious Behavior: Slashing: Validators face penalties (slashing) if they engage in malicious behavior, such as double-signing or validating incorrect information. Slashing results in the loss of a portion of their staked ETH, discouraging bad actors and ensuring that validators act in the network's best interest. Inactivity Penalties: Validators also face penalties for prolonged inactivity. This ensures that validators remain active and engaged in maintaining the network's security and operation. Fees Applicable on the Ethereum Blockchain 1. Gas Fees: Calculation: Gas fees are calculated based on the computational complexity of transactions and smart contract executions. Each operation on the Ethereum Virtual Machine (EVM) has an associated gas cost. Dynamic Adjustment: The base fee introduced by EIP-1559 dynamically adjusts according to network congestion. When demand for block space is high, the base fee increases, and when demand is low, it decreases. 2. Smart Contract Fees: Deployment and Interaction: Deploying a smart contract on Ethereum involves paying gas fees proportional to the contract's complexity and size. Interacting with deployed smart contracts (e.g., executing functions, transferring tokens) also incurs gas fees. Optimizations: Developers are incentivized to optimize their smart contracts to minimize gas usage, making transactions more cost-effective for users. 3. Asset Transfer Fees: Token Transfers: Transferring ERC-20 or other token standards involves gas fees. These fees vary based on the token's contract implementation and the current network demand. Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking rewards, transaction fees, and liquidity incentives. Incentive Mechanisms: Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in OSMO tokens, for their role in securing the network and processing transactions. Delegators who stake their OSMO tokens with validators receive a share of these rewards. Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may receive additional incentives in the form of OSMO tokens to encourage liquidity provision. Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards while maintaining liquidity in the pools. Applicable Fees: Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps, staking, and governance participation. These fees are distributed to validators and delegators, incentivizing their continued participation and support for network security. Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network and validate transactions. Here’s a detailed explanation of the incentive mechanisms and applicable fees: Incentive Mechanisms 4. Validators: Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked. They earn rewards for producing and validating blocks, which are distributed in SOL. The more tokens staked, the higher the chances of being selected to validate transactions and produce new blocks. Transaction Fees: Validators earn a portion of the transaction fees paid by users for the transactions they include in the blocks. This provides an additional financial incentive for validators to process transactions efficiently and maintain the network's integrity. 5. Delegators: Delegated Staking: Token holders who do not wish to run a validator node can delegate their SOL tokens to a validator. In return, delegators share in the rewards earned by the validators. This encourages widespread participation in securing the network and ensures decentralization. 6. Economic Security: Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or being frequently offline. This penalty, known as slashing, involves the loss of a portion of their staked tokens. Slashing deters dishonest actions and ensures that validators act in the best interest of the network. Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain 7. Transaction Fees: Low and Predictable Fees: Solana is designed to handle a high throughput of transactions, which helps keep fees low and predictable. The average transaction fee on Solana is significantly lower compared to other blockchains like Ethereum. Fee Structure: Fees are paid in SOL and are used to compensate validators for the resources they expend to process transactions. This includes computational power and network bandwidth. 8. Rent Fees: State Storage: Solana charges rent fees for storing data on the blockchain. These fees are designed to discourage inefficient use of state storage and encourage developers to clean up unused state. Rent fees help maintain the efficiency and performance of the network. 9. Smart Contract Fees: Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart contracts on Solana are based on the computational resources required. This ensures that users are charged proportionally for the resources they consume.
Sen kauden alku, jota ilmoitus koskee
2024-03-28
Sen kauden päättyminen, jota ilmoitus koskee
2025-03-28
Energiaraportti
Energian kulutus
340.07389 (kWh/a)
Energiankulutuksen lähteet ja menetelmät
The energy consumption of this asset is aggregated across multiple components: To determine the energy consumption of a token, the energy consumption of the network(s) solana, ethereum, osmosis, binance_smart_chain is calculated first. Based on the crypto asset's gas consumption per network, the share of the total consumption of the respective network that is assigned to this asset is defined. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation.
Vastuuvapauslauseke
Tällä sivulla oleva sosiaalinen sisältö (”sisältö”), mukaan lukien muun muassa LunarCrushin tarjoamat twiitit ja tilastot, on peräisin kolmansilta osapuolilta ja se tarjotaan sellaisenaan vain tiedotustarkoituksiin. OKX ei takaa sisällön laatua tai tarkkuutta, eikä sisältö edusta OKX:n näkemyksiä. Sen tarkoituksena ei ole tarjota (i) sijoitusneuvontaa tai -suosituksia, (ii) tarjousta tai kehotusta ostaa, myydä tai pitää hallussa digitaalisia varoja tai (iii) rahoitus-, kirjanpito-, laki- tai veroneuvontaa. Digitaaliset varat, mukaan lukien vakaakolikot ja NFT:t, sisältävät suuren riskin ja niiden hinta voi vaihdella suuresti. Digitaalisten varojen hintaa ja suorituskykyä ei voida taata, ja ne voivat muuttua ilman ennakkoilmoitusta. OKX ei anna sijoitus- tai omaisuussuosituksia. Sinun tulisi harkita huolellisesti, onko digitaalisten varojen treidaus tai hallussapito sinulle sopivaa oman taloudellisen tilanteesi valossa. Ota yhteyttä laki-/vero-/sijoitusasiantuntijaan, jos sinulla on kysyttävää omaan tilanteeseesi liittyen. Lisätietoja on käyttöehdoissa ja riskivaroituksessa. Käyttämällä kolmannen osapuolen verkkosivustoa hyväksyt, että sen käyttöön sovelletaan kolmannen osapuolen ehtoja. Ellei nimenomaisesti kirjallisesti mainita, OKX ja sen tytäryhtiöt (”OKX”) eivät ole millään tavalla yhteydessä kolmannen osapuolen verkkosivuston omistajaan tai ylläpitäjään. Hyväksyt sen, että OKX ei ole vastuussa mistään menetyksistä, vahingoista tai muista seurauksista, jotka johtuvat kolmannen osapuolen verkkosivuston käytöstäsi. Huomaa, että kolmannen osapuolen verkkosivuston käyttö voi johtaa varojen menettämiseen tai vähenemiseen. Tuote ei ehkä ole käytettävissä kaikilla lainkäyttöalueilla.
Näytä lisää